Blackspot: Using Tensor Decompositions to
Guide Inspection of Source Code

David Bruns-Smith
James Ezick
Janice McMahon
Jonathan Springer

Reservoir Labs, Inc.
New York, NY

WInnComm ‘16

Wireless Innovation Forum

Conference on

Wireless Communications Technologies
and Software Defined Radio

16 March 2016

"O\/!- 5-‘:"‘
j,‘)(. QIJw»- .,.) '/Il o
- '(
- | -] e y 4
"‘:‘\ = O J C e
1< b ot ol
rifet f:] .. & Va¢
i S
7
ink ug,g,\c.ss unless

oxd 1~ reversal to
disollovs 0 on diegnal

= (4-FT2ee0) f\e

T 2.0 <=y Flayos -

Reservoir Labs

WInnComm 16

Holy Grail of Software Testing

The dream ...

SOFTWARE COMMUNICATIONS ARCHITECTURE
SPECIFICATION

Automatic
Process
TR Plain Text Fast Automated Test
[Disribarion Statement A - Appeoved fo pub eieae, dutibution s mlimied (07 Avgust 3015) _| SpeCif i C ati On Pa S s: S a f' e ! Comp Iian t !
Document Fail: And here's why ...

The reality ...

Testing remains a challenging process that will continue to
require and benefit from a combination of tools and processes

Reservoir Labs WInnComm '16

The Testing Gap

: : Testin : :
Static Analysis 9 Dynamic Testing
Gap (Including Simulation)
Analyze the Code Execute the Software
* Evaluate all possible * Reassurance from
execution paths “Test what you built"
* Formal methods can be Manual * Predetermined set of test
difficult to scale Source Code cases or scenarios
Inspection
* When precision of * When all execution paths
analysis is limited - cannot be covered -
False Positives — False Negatives -
Hard to conclusively Hard to conclusively
prove correctness prove correctness

Reservoir Labs WInnComm '16

SCA 2.2.2 and 4.1 Compliance Requirements

SCA 2.2.2 and 4.1 Compliance Requirements
“The X operation shall Y if/when Z occurs.”

SCA15: The initialize operation shall raise an InitializeError exception
when an initialization error occurs.

SCA16: The releaseObject operation shall release all internal memory
allocated by the component during the life of the component.

® Static Analysis
— Can find X, can determine if Y and test for Z (sometimes) exists
~ Success depends on matching Y with Z - difficult (undecidable?)

® Dynamic Testing
— Can run X select a sample of Zscenarios, check for Y
— Success depends on coverage of Z (usually assume -Z 2 -Y)

Reservoir Labs WInnComm '16

C/C++ Code Weaknesses

MITRE CWE

Common Weakness Enumeration
® Large Database
® Updated Frequently
® Includes Examples

Static Analysis
® Effort required to
maintain specific tests

® (Can be hard to capture
cause in a single rule

® What if we could use
latent factors derived
from examples?

Presentation Filter: | --None-- a
CWE-401: Improper Release of Memory Before Removing Last Reference
("Memory Leak')

Improper Release of Memory Before Removing Last Reference ('"Memory Leak')

Weakness ID: 401 (Weskness Base) Status: Draft
¥ Description
Description Summary

The software does not sufficiently track and release allocated memory after it has been used, which slowly consumes remaining
memory.

Extended Description
This is often triggered by improper handling of malformed data or unexpectedly interrupted sessions.
Alternate Terms
Terminology Notes
Time of Introduction
Applicable Platforms
Modes of Introduction
Common Consequences
Likelihood of Exploit
¥ Demonstrative Examples

vV v v v v

v

Example 1
The following C function leaks a block of allocated memory if the call to read() does not return the expected number of bytes:

Example Language: C

char* getBlock(int fd) {
char* buf = {char*) malloc(BLOCK_SIZE);
if (1buf) {
return NULL;

3
if (read(fd, buf, BLOCK_SIZE) I= BLOCK_SIZE) {
return NULL;

return buf;

Example 2

Here the problem is that every time a connection is made, more memory is allocated. So if one just opened up more and more
connections, eventually the machine would run out of memory.

Example Language: C
bar connection(){
foo = malloc(1024);
return foo;
endConnection(bar foo) {
free(foo);
int main() {
while(1) //thread 1
//0n a connection
foo=connection(); //thread 2

/fWhen the connection ends
endConnectien(foo)

https://cwe.mitre.org/data/definitions/401.html

Reservoir Labs

WinnComm '16 5

Titles:

Latent Semantic Analysis

Technical Memo Example

cl: Human machine interface for Lab ABC computfer applications
c2: A survey of user opinion of computer system response time

c3: The EPS user interface management system

cd: System and fuoman system engineering testing of EPS

c5: Relation of user-perceived response fime to ermor measurement

ml: The generation of random, binary, unordered frees PY
m2: The intersection graph of paths in frees

m3: Graph minors IV: Widths of frees and well-quasi-ordering

md: Graph minors: A survey

Terms

human
interface
compiiter
user
system
response

[#]
—

ﬂﬂﬂﬂﬂﬂﬂﬂﬂi—'i—'i—'|

o
Documents
¢2 ¢33 ed o5 ml m m3 md
e o
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0
1 1 2 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1 o
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
o

A sample dataset consisting of 9 technical
memoranda. Terms are italicized. This dataset can be ®
described by means of a term by document matrix.

S. Deerwester, S. T. Dumais and R. Harshman, "Indexing by Latent
Semantic Analysis,” Journal of the American Society for Information
Science, Vol. 41, No. 6, 1990.

LSA is a from of
Unsupervised Machine Learning

Unstructured Text

Convert text into a
word-occurrence matrix

Compute SVD of the matrix

Output allows clustering of terms
and documents (topics)

Source Code

Convert code into a function-
structure/symbol occurrence matrix

Compute SVD of the matrix

Output allows clustering of functions
and structures/symbols

Reservoir Labs

WInnComm

16

Prior Work

har aluint B) [|_char]
funcli{int) b); [nt]
Fnc2(; .. —

Code base of {1) Extraction of
funchionz AP! symbalz

{-3) Identification of
APl usage paffems

Figure 1: A schematic overview of our method for vulnerability extrapolation.

sbatiz int £lic deccds frams SOPP (AWCosdscfontaxt sawctx,
wold sdeks, ink sdsta xizs,

i I---1 migned shoot 1ims packsts; ink g ptr; [---]
pimlas = s—sErmes detall];
piml limit = s-ssvcte->helght & s->Ecems.linsalzs|3];
Erams_aize = AV_BLIZ|iDef [atress ptc]l; [---1]
frame_aize -= 1ld;
/¢ lEszebs tixcugh the chunks =/
whils ([(Ecems_sizs > @] ii [(mum_chunka > @] { [---1]
chunk typs = A¥_BLLE ibuf [wtress pec]);
atsmem phr = I
awlbch (chunk bypsp [[---]
cass FLI_DELTR:
yptr = Op
comprmassd lizss = RV _FLIC{ibuf [sbream per]iz
mtream per 4= I
whils {compresssd linem > 0] |
lins_pmcksts = A¥_BLLE{ ibuf [stream per]);
atremm_ptr = 7
2f ({lins_packsts i 0xCOO00) == OxCODO) [
#f lim mkip
Lins_packsta = -lins_pecksta;

BerS e e tR S vmun s mwba =

-

L

£/ "lamt byts® cpoods
pizalaly per + s frems limsaizs[D] - 1] =
lims_packets & MxE£E;
§owles { [-.-
yptr = a—>Ereme linewizell];

Fol---1
raturn buf_siza;
I

EE TS - R R]

conak uintd_t :buf, imt buf_xizs)

¥ ptr += lins packats s a-»frama lizssiza[0];
§ slms Zf {{lins_packsts i DwONO0] == Sxd000] |

§ slss If {(lins_packsta & DxCO00] == CxE000] |

Figure 4: Original vulnerability (CVE-2010-3429),

F. Yamaguchi, F. Lindner and K. Rieck, "Vulnerability
Extrapolation: Assisted Discovery of Vulnerabilities using
Machine Learning,” WOOT'11, August 2011.

Similarity | Functlon name
1.00 flicdecode_frame_BEPP
0.96 flie decode_frame_15_16BDD
0.83 lz_unpack
0.80 decodeframe (lcldec.c)
0.80 rawencode
0.76 vmdvideodecode init
0.72 vmd decode
0.70 aascdecode_frame
0.68 flicdecode_init
0.67 de code_format 80
0.66 targadecoderle
0.66 adpcmdecode_init
0.66 decode_frame (zmbv.c)
0.66 decode_frame (8bps.c)
0.65 msrle decode 8 16 24 32
0.65 wmavoicedecode_init
0.65 get_guant
0.64 MP3lame encode_frame
0.64 mpegtswrite_section
0.64 tgv_decode_frame

Table 1: Top 20of 6,778 functions ranked by cosine sim-
ilarity to flic decode_frame 8EPP. Discovered vul-

nerabilities are indicated by a shaded background.

v

Later work extended this method to
incorporate Abstract Syntax Tree (AST)
fragments

Method uses a form of
Principal Component Analysis (PCA) -

Cannot separate structure from symbols

Any significant separation in any
portion of the pattern would put the
points “outside the circle” and would
not be detected by similarity

What is needed is an approach that
detects cases where different symbols
are used within similar structure and
vice versa

Reservoir Labs

WInnComm 16

Tensor Decompositions

U

% I |

CP Tensor Decomposition Tensor 0331 Fomponent 26:__ Weight: 13.0
. . . . 02s5[]
Tensor |s_decomposed into a non-unique weighted sum of Component ol n ﬂ 1 Function
a pre-defined number of rank-1 components Atensorisa ggs} I]
multidimensional "¢ 50 100 150 200 250 300 _ 350 400
T. Kolda and B. Bader, "Tensor Decompositions and array. Ten_spr g-éi:]
Applications,” SIAM Review, Vol 51, No. 3, 2009. decompositions 53| 1 Structure
generalize the ol]
SVD us'ng 82 ’ 5 i ‘1(] ; 15I 20 i %5
techniques from 33} .
multilinear 62l Kind
algebra. 0(2%.0 0.5 1.0 15 2.0 25 3.0 35 7.0
0:35f
813r 1 Symbol
005} A]
0.00 - L L L L
0 50 100 150 200 250 300 350

FM3TR Source Code
CP-APR, R =100 components

Reservoir Labs WInnComm '16 8

Blackspot Workflow

Source
.CPP

C/C++
Source Code
for Analysis

"as is"

Ingest

R-Check SCA
Uses compiler-grade
whole project
parsing combined
with Pitchfork rules
to extract markers
from code

Pitchfork
Metalanguage that
combines syntactic

patterns with
actions - used to

identify AST
structures in code

Extract

Component 26: _ Weight: 13.0

Decompose s
zég‘ J
L L
Tensor
Function x >
o
Structure x =
N
Symbol x °
Kind
Symbols Kind Structures
B e
Pattern 1 /\\m\jahd_argument I N
/) -""‘--”'— / \
Function A =" char -h__:::_'.'.‘-‘-‘-_-_-._-_-_-_:--:‘:':’
\‘ Rl - var BPPEE RN
\oint .- e N
Pattern2 |— B eaata:
/ fl assert I for \
ca !
Function B l‘\ jor\ h“')
// b * . . / \
\ Pattern 3 ‘\char new . .

Uncover Patterns

Cluster functions based on similarity of pattern occurrence
Logically organize code for manual inspection
Identify functions that share patterns with known defects
Find “synonyms" of known defects for inspection

Reservoir Labs

WInnComm 16

Blackspot Tensor Analysis Experiments

CORBA: :Object_ptr Pattern 39
F M 3TR CO d e RBudioCapture: :getPort (const | Structure | Score |
CORBA: :Char* name) LIFQ [1.0 |
throw (CORBA::SystemException,
R CF::PortSupplier: :UnknownPort) Symbols Score
{ CF::PortSupplier::UnknownPort 0.5
. ~ 1 O0,000 | I n eS Of C+ + std::string temp (name); operatorl= 05
if (temp != "AudioCaptursCut") { [Kind [Score |
. N throw [CALL [1.0 |
u n C I O n S, CF::PortSupplier: :UnknownPort () ;
! Pattern 57
. . | Structure | Score |
33 1 Sym bOlS' . return m_pcmout->getPort(); | I | 10 |
k' AudioCapture-getPort [Symbols [Score |
I n S, Pattern Unigueness Score [tk_error [10 |
39 0.2222
57 0.0502 | Kind | Score |
24 structures = or72 = = '
Pattern 93
. Structure | Score |
® 1,515 non-zero entries ' Lo '
I
Symbols Score

tk_class 0.98
tk typeref tk class 0.02

Reservoir ENSIGN B B |

® O ptl m ized, pa ra | |E| ized These tables show the results of the tensor decomposition for the
L AudioCapture::getPort() function. The table below the code shows
d ecompos 1Itions for the breakdown of the function into patterns.
S pa I'se€ t@ NSOrsS The Uniqueness Score is a value between 0 and 1 indicating how

unique the pattern is to this particular function.

o

1) 1 >ECon d > The tables to the right show three of these patterns and their composition

in terms of structure, symbol, and symbol kind. The score indicates what
fraction of the total symbols, structures, or kinds within the pattern that
particular index represents. Note that “tk_error” and “tk_class” are
Pitchfork type symbols that refer to the type of “UnknownPort" and
“std::string,” respectively.

Reservoir Labs WInnComm '16 10

Blackspot for Code Inspection

Pattern 10. Unigueness = 0.05

Pattern 11. Unigueness = 0.11

Pattern 37. Unigueness = 1.0

Siuciure SCoIe Siuciure SCore SiTuciore score
IF(IF()) 0.79 IF() 088 [F(LOOPOLOOPOIF() | 1.0
)
IEQ 021 IE(FQ) 0.12 Symbols Score
Symbols Score Symbols Score tk_class 04
tk error 1.0 char * 1.0 char 0.2
- - tk class * 0.2
Kind Score Eind Score nt 0.2
THROW 09 THROW 10 Kind Score
NEW 01 VAR 0.8
THROW 02

Example: [SCA 2.2.2] AP0090: The getPort operation shall raise an
UnknownPort exception if the port name is invalid.

Unigueness Score captures the number of functions in which a particular
code pattern occurs (# functions = 1/uniqueness score)

From the breakdown of patterns —

Code inspection tasks can be organized in a logical way —

Sort relevant functions by pattern — or — sort by pattern across requirements

Reservoir Labs

WInnComm 16

1

Blackspot for Weakness Discovery

MskDemodulator::SymbolSynch

MskDemodulator::SymbolSynch

Pattern | Umiqueness Function Cosine Shared
Score Sinulanty | Patterns
6 0.584 MskDemodulator:-Run 0.482 6, 67
87 0.487 FileOutput MAC LLC::RewritePacket | 0.321 84
84 0.286 ShortInPort impl::ShortlnPort impl | 0.263 74]
74 0.222 Kind: NEW MskModulator::Modulate 0.263 , 67,
67 0.021 16
16 0.016 CVSDDecoder::CVSDDecoder 0.217 74
RsBlockDecoder::RsBlockDecoder 0.216 74]67
Filelnput MAC LLC: Init 0.129 74 l
Has similar memory leak | | [FileOutput MAC LLC:‘Run 0121 |84
to SymbolSynch MskDemodulator:Init 0.116 74|67

SymbolSynch function in which Cppcheck discovered a memory leak

RHS: Shows the patterns that make up SymbolSynch

LHS: Shows those functions with the top cosine similarities to SymbolSynch

By focusing on functions with shared patterns, less inspection in
necessary to identify similar weaknesses

In this case, Pattern 74 is the only pattern with NEW kind -
Only two functions with Pattern 74 were not constructors -

One had a memory leak that was not found by Cppcheck or SVD approach!

Reservoir Labs

WInnComm 16

12

Future Work

Technique is applicable to general C/C++ code
With ENSIGN, scales to millions of lines of code
Cyber-physical systems

Expand the base of markers
Tensors not limited to 4 dimensions

Can add derivative factors
(E.g., cyclomatic complexity)

Validate
Does this accelerate code inspection?
Automation?

Provides a new way of thinking about
compliance testing workflow

Reservoir Labs WInnComm '16

13

Thank You

R-Check SCA development supported by
SPAWAR under

Navy Phase 1I.5 SBIR Contract
“Static Analysis Tool for Interface
Compliance Verification and Program
Comprehension”

For more information on R-Check SCA
® https://www.reservoir.com/rchecksca

Contact us by email
® rcheck-support@reservoir.com

Reservoir Labs WInnComm '16

14

https://www.reservoir.com/rchecksca
mailto:rcheck-support@reservoir.com

